

защитный код для кожи

Возможности профилактики атопического дерматита

Авторы: Ольга Анатольевна **Раевская**, канд. мед. наук; Виктория (ергеевна **Москвичёва**, StatusPraesens (Москва)

Копирайтинг: (ергей Лёгкий

Атопический дерматит (АТД) часто рассматривают как один из этапов «аллергического марша» — прогрессирующего состояния, при котором к одному заболеванию со схожим патогенезом со временем присоединяются другие. В этом ряду бронхиальная астма, аллергический ринит, пищевая аллергия и, вероятно, эозинофильный эзофагит^{1,2}. АТД сопровождают тяжёлые симптомы, снижение качества жизни детей и их семей, регулярные визиты к врачам и экономическое бремя³. Современные данные подтверждают, что предотвратить АТД возможно, соблюдая меры профилактики как до, так и в ближайшие месяцы после рождения ребёнка.

омпонент АТД, которому придают ключевое значение, — наследственность⁴. И всё же наличие мутаций генов, кодирующих структурные и функциональные белки эпидермиса, а также регулирующих врождённый

и приобретённый иммунный ответ, не гарантирует поражения кожи. Проявление врождённых детерминант зависит от условий окружающей среды, способных «включать и выключать» определённые гены. Внешние факторы начинают дей-

[В России в 2022 году распространённость АТД в возрасте до 14 лет составила 1,4%, заболеваемость — 654,3 случая на 100 тыс. В когорте 15—17-летних эти значения 1,05 и 347,8 соответственно.]

ствовать с момента зачатия и не прекращают своё влияние после рождения ребёнка, поэтому роль акушеров-гинекологов, неонатологов и педиатров в выявлении триггеров АТД и формировании профилактических стратегий трудно переоценить.

(овокупность факторов

Чаще всего АТД манифестирует через 3—6 мес после рождения, и примерно у 60% пациентов симптомы возникают в течение первого года жизни. По оценкам разных исследователей, заболевание затрагивает от 0,2 до 36% детского населения, и такой разброс можно объяснить различиями в сборе и статистической обработке данных. В России в 2022 году распространённость в возрасте до 14 лет составила 1,4%, заболеваемость — 654,3 случая на 100 тыс. В когорте 15—17-летних эти значения меньше — 1,05 и 347,8 соответственно6.

Подтверждают АТД на основании сочетания признаков: хронических или рецидивирующих зуда, экзематозных высыпаний с типичной морфологией, раннего возраста начала, ксероза, других проявлений атопии, семейного анамнеза. Дифференциальную диагностику выполняют со многими заболеваниями — пелёночным, аллергическим, контактным, себорейным дерматитом, ихтиозом, чесоткой, иммунодефицитными состояниями (синдромы Вискотта—Олдрича и гипериммуноглобулинемии Е) и т.д.

Патогенез АТД сложен и включает генетическую предрасположенность, дисфункцию эпидермиса и воспаление, вызванное активацией Th_2 -ответа В числе наследственных предпосылок — отклонения в строении и работе белков кожи (филаггрин и аквапорины) $^{8.9}$, а также вовлечение факторов иммунитета (хелперы Th_2 , интерлей-

[Международные регуляторы, включая ВОЗ, рекомендуют исключительно грудное вскармливание в течение как минимум первых 4—6 мес, однако пока не ясно, способно ли оно предупредить развитие АТД.]

кины). Как результат, за этим следует нарушение эпидермального барьера и повышенная трансэпидермальная потеря воды, степень которой коррелирует с тяжестью ATД.

Впрочем, возникновение АТД невозможно объяснить только генетическими детерминантами — на реализацию заболевания существенно влияют факторы окружающей среды и особенности питания¹⁰. Косвенным подтверждением этого служит увеличение частоты атопий на фоне нарастающей индустриализации и урбанизации^{11,12}.

Так, возможными триггерами активации генетической предрасположенности могут выступать раздражающие и вызывающие зуд вещества — никель и резина, лаурилсульфат и гидроксид натрия, средства личной гигиены, содержащие отдушки¹³. То же самое можно сказать о загрязнителях воздуха — оксидах серы и углерода, органических растворителях, продуктах горения¹⁴. Существуют работы, в которых показана ассоциация АТД со слабым воздухообменом в помещениях, ремонтом, переездом в новый дом, а также с проживанием около автомобильных дорог¹⁵.

В последние годы большое внимание также уделяют факторам риска, напрямую не связанным с воздействием на кожу. Наиболее очевидный из них — преобладание в питании термически обработанных высококалорийных продуктов, содержащих мало витаминов и минералов, растворимых и нерастворимых пищевых волокон. Причём любопытно, что на вероятность возникновения АТД у ребёнка значительно влияет рацион его матери — во время беременности и грудного вскармливания 16.

[Фактор риска, напрямую не связанный с воздействием на кожу, — преобладание в пище термически обработанных высококалорийных продуктов, содержащих мало пищевых волокон, витаминов и минералов.]

(самого рождения

Начальный этап жизни ребёнка важный период, формирующий основы здоровья и устойчивость естественных защитных барьеров. Факторы, которые в целом считают благоприятными для младенца, — контакт «кожа к коже» в первые минуты после рождения, а также гридное вскармливание. К суммарным позитивным эффектам таких практик относят колонизацию кожи «правильными» бактериями, поддержание разнообразия микробиоты кишечника, становление иммунной толерантности и передачу материнских защитных антител и молекул (олигосахаридов, иммуноглобулинов, лактоферрина и др.) 17,18.

Международные регуляторы, включая ВОЗ, рекомендуют исключительно грудное вскармливание в течение как минимум первых 4-6 мес 19,20. Следует отметить: до настоящего времени точка в вопросе о том, способно ли естественное вскармливание предупредить развитие АТД, так и не поставлена²¹. Есть авторы, которые не находят прямой (ВЯЗИ между профилактикой заболевания и материнским молоком, однако говорят о его возможном позитивном влиянии на выраженность симптомов²². В то же время существуют работы, выводы которых более обнадёживающие: дети, находящиеся на исключительно грудном вскармливании дольше 3—4 мес, имеют значимо меньший риск $AT \mathcal{A}^{18}$.

Впрочем, недостаточно подтверждённая ассоциация уменьшения вероятности АТД на фоне грудного вскармливания не отменяет ценности последнего. В любом случае материнское молоко следует признать самым лучшим вариантом питания для младенца вне зависимости от семейного анамнеза или наличия других рисков АТД. А вот позднее (8—12 мес жизни) начало введения потенциальных аллергенов в рацион ребёнка вопреки бытовавшему ранее мнению не снижает риск атопических заболеваний. Всё больше исследователей гово-

В альянсе с акушерами-гинекологами

Противостоять наследственным детерминантам сложно, но не невозможно. И чем раньше начата профилактическая работа, тем она успешнее. Формирование паттернов эпигенетического регулирования происходит в период внутриутробного развития, тогда же закладываются риски АТД. Рекомендации акушеров-гинекологов могут существенно снизить вероятность этого заболевания.

Один из важных превентивных шагов — отказ беременной от аКТИВНОго и пассивного курения, которое давно признано фактором метилирования ДНК²³ и возможным триггером АТД²⁴. Из негативных поведенческих аспектов будущей матери, предрасполагающих к АТД у ребёнка, также следует отметить повышенную тревожность, психоэмоциональные нарушения²⁵ и употребление алкоголя²⁶.

Краеугольный камень фетального программирования — питание женщины²⁷. Молочные продукты, яйца, овощи, в целом растительная пища подтвердили свой «противоатопический» потенциал: все они связаны с меньшей частотой экземы у потомства²⁸. Не случайно дети, чьи матери придерживаются средиземноморской диеты во время беременности, гораздо реже страдают АТД (ОШ 0,55; 95% ДИ 0,31—0,97)²⁹. Помимо этого профилактическим действием в период гестации обладают также ферментированные продукты (например, йогурт, кефир, сыр³⁰).

Необходимо сократить потребление простых углеводов (с повышением вероятности атопии у детей ассоциированы материнские чрезмерная прибавка массы тела и гестационный сахарный диабет^{31,32}), избегать контакта с пестицидами, инсектицидами, мест с избыточным загрязнением атмосферы. Безусловно, беременным важны инсоляция в разрешённое для этого время суток, полноценный сон, регулярные физические нагрузки, прогулки на свежем воздухе, использование витаминно-минеральных добавок при высоком риске гипо- и авитаминоза³³.

С целью стандартизации комплекса для профилактики недостаточности витаминов и минералов эксперты BO3 и OOH разработали спецификацию UNIMMAP (United Nations international multiple micronutrient antenatal preparation — поливитаминный препарат для антенатальной подготовки по международному стандарту OOH)³⁴. Эффективность средств, соответствующих UNIMMAP, подтверждена большим количеством клинических данных по сравнению с добавками, имеющими другой состав³⁵. В том числе их результативность во время беременности была изучена в рандомизированных контролируемых исследованиях^{36–38}.

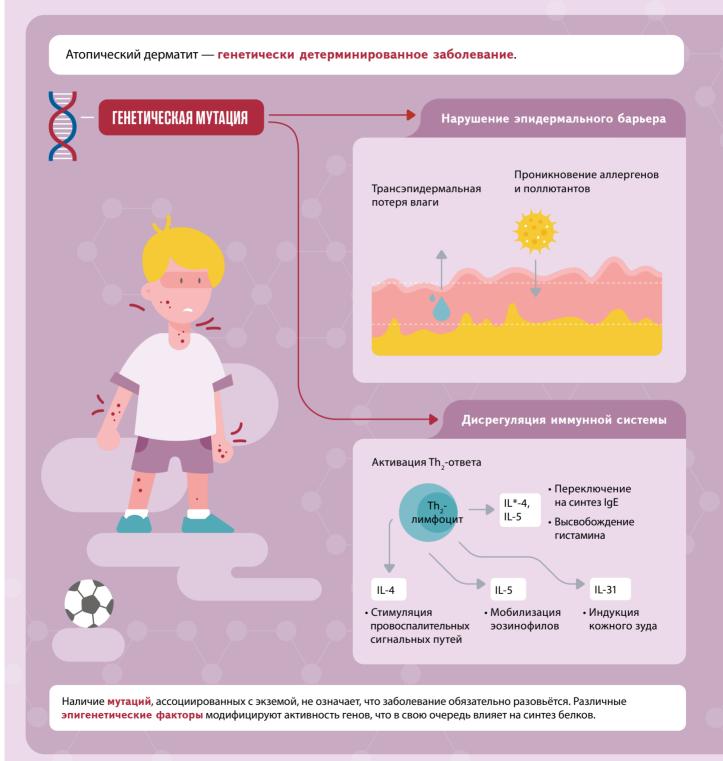
Особенность соответствующих этому стандарту составов — обоснованное исследованиями количество фолиевой кислоты (не менее 400 мкг), снижающей риск врождённых пороков развития, включая дефекты нервной трубки. Дополнительно в обязательный набор входят безопасные дозы других микронутриентов, необходимых будущим матерям, — витамины Е (10 мг), B_1 (1,4 мг), B_2 (1,4 мг), B_6 (1,9 мг), B_{12} (2,6 мг), C (70 мг), колекальциферол (200 МЕ), а также ниацин (18 мг), цинк (15 мг), железо (30 мг), селен (65 мкг), медь (2 мг) и йод (150 мкг). При подборе пренатальных комплексов следует отдавать предпочтение тем, которые содержат докозагексаеновую и эйкозапентаеновую кислоты. Они формируют основу клеточных мембран и регулируют их проницаемость, что особенно актуально для предупреждения заболеваний кожи и аллергических состояний.

Наконец, ещё один этап, во время которого весомый вклад в профилактику АТД вносят акушеры-гинекологи, — непосредственно момент появления младенца на свет. Согласно исследованиям, после Кесарева сечения риск АТД у детей выше по сравнению с естественными родами (ОШ 1,33; 95% ДИ 1,02—1,74)³⁹.

рят о превентивном в отношении $AT\mathcal{A}$ эффекте разнообразия диеты и раннего прикорма 40,41 , а рекомендации, включая российские, уже давно сдвинули его начало к 4-6 мес жизни 42,43 .

Нутриенты — критическое звено

Для предупреждения риска ATД у ребёнка следует позаботиться о достаточном снабжении материнского организма витамином D. Низкий уровень его метаболитов в пуповинной крови ассоциирован с повышением вероятности заболевания на 60%. Кроме того, дефицит этого нутриента во время беременности ответственен за преобладание среднетяжёлых форм ATД у детей 44.45.


И если эстафету по адекватному обеспечению беременных витамином D начинают акушеры-гинекологи, то продолжают радеть за достаточные уровни нутриента у родившихся детей неонатологи и педиатры — следуя национальным рекомендациям по его дотации⁴⁶. Справедливости ради отметим, что научных работ, достоверно указывающих на превентивную роль витамина D в отношении профилактики АТД у детей (речь идёт о прямом назначении ребёнку), не существует. Все накопленные на сегодняшний день данные противоречивы. Однако свидетельств в пользу того, что сывороточная концентрация метаболитов витамина D обратно пропорциональна тяжести кожных симптомов, достаточно 47,48.

Другой предполагаемый фактор риска $AT\mathcal{A}$ — дефицит ω_3 -полиненасыщенных жирных кислот (ω_3 -ПНЖК). Эти вещества влияют на структуру и функцию клеточных мембран, модулируют воспалительные реакции, снижают синтез простагландина E и ингибируют продукцию иммуноглобулина E. Не существует рекомендаций по дотации ω_3 -ПНЖК детям, однако адекватное снабжение можно реализовать опосредованно: через диету матери или назначение ей добавок во время лактации ω_3 -

Третий компонент, который может способствовать профилактике АТД, — пробиотики. Они модулируют кишечную микрофлору и, возможно, влияют на формирование иммунного ответа.

ОТЛАДКА НЕОПТИМАЛЬНЫХ НАСТРОЕК

ПЕРВИЧНАЯ ПРОФИЛАКТИКА АТОПИЧЕСКОГО ДЕРМАТИТА

ОСНОВНЫЕ МЕХАНИЗМЫ ЭПИГЕНЕТИЧЕСКОЙ РЕГУЛЯЦИИ

Метилирование ДНК Экспрессия некодирующих РНК Модификация гистонов

ФАКТОРЫ, СНИЖАЮЩИЕ РИСК АТОПИЧЕСКОГО ДЕРМАТИТА

вывод:

Риск атопического дерматита обусловлен не только генетикой, но и **влиянием внешних** факторов, воздействие которых начинается ещё до рождения. Совместные усилия акушеровгинекологов, неонатологов и педиатров могут способствовать снижению вероятности этого заболевания, серьёзно ухудшающего качество жизни в любом возрасте.

^{*} Интерлейкин; ** ω₃-полиненасыщенные жирные кислоты; *** витаминно-минеральные комплексы; **** FIGO Working Group on Good Clinical Practice in Maternal–Fetal Medicine. Good clinical practice advice: Micronutrients in the periconceptional period and pregnancy // Int. J. Gynecol. Obstet. 2019. Vol. 144. P. 317–321. [PMID: 30710361]

Учитывая увеличение кишечной пронищаемости и уменьшение разнообразия микробиоты у пациентов с экземой, назначение средств этой группы кажется целесообразным. В частности, метаанализ и систематический обзор 2019 года выявил значимое снижение заболеваемости АТД у детей, получавших различные пероральные пре- и пробиотики Превентивный подход возможно реализовать также и в период беременности, а назначение средств этой группы женщине во время грудного вскармливания снижает риски АТД у детей 1.

Основа основ

Кожа — барьер, оберегающий человека от агрессивной внешней среды. Логично предположить, что профилактикой АТД может стать поддержание здорового состояния кожи. Второй шаг — ограничение воздействия веществ, напрямую повреждающих покровы тела или сенсибилизирующих организм.

При уходе за ребёнком акцент следует делать на минимизацию контакта с известными триггерами, включая пыльцу, плесень, пылевых клещей, аллергены домашних животных. Кожные барьеры разрушают дезинфицирующие средства, озон, высокая концентрация в воздухе микрочастиц диаметром менее 2,5 мкм, характерных для продуктов горения. Рекомендации по снижению риска в регионах с неблагоприятной экологической ситуацией включают использование занавесок и очистителей воздуха⁵².

Табачный дым — одно из самых токсичных веществ со множеством негативных эффектов на здоровье. Он влияет на целостность кожного барьера и связан с повышенной распространённостью АТД у детей. В перечне механизмов его повреждающего действия — нарушение способности организма секретировать противовоспалительные цитокины под воздействием бензола. Это не единственный, но очень важный повод [Триггерами активации генетической предрасположенности могут выступать такие вещества, как никель и резина, лаурилсульфат и гидроксид натрия, оксид серы, растворители, продукты горения.]

избавить ребёнка любого возраста от пассивного курения 53 .

Существуют вещества, которые напрямую не повреждают эпидермис, но разрушают естественные защитные барьеры, в частности, могут изменять трансдермальный липидный слой, (0став и разнообразие микроорганизмов 54 . Модуляции микробиоты способствуют синтетические моющие средства, преимущественно нейтрально-щелочные, а также антибиотики — как топические (мыло, крем), так и пероральные. Именно поэтому следует избегать очищающих продуктов с детергентами, красителями, отдушками, а системные противомикробные препараты назначать (трого по показаниям.

[Вещества, негативно влияющие на естественные защитные барьеры кожи, — озон, синтетические моющие средства, красители и отдушки, топические антибиотики (мыло, крем).]

Для ежедневной гигиены ребёнка достаточно ванны с тёплой водой длительностью 5—10 мин⁵⁵, полезны также регулярные воздушные ванны, специальные средства ухода за кожей (с рН 5,5). Кроме того, важно следить за температурным режимом в помещении и одевать ребёнка адекватно, поскольку чрезмерная жара или, наоборот, холод могут способствовать реализации АТД у предрасположенных к нему лиц.

Генетическая предрасположенность к АТД хорошо документирована, однако простые рекомендации способны значимо (низить вероятность возникновения заболевания. Профилактические мероприятия возможны до и после рождения ребёнка, поэтому необходимы (координированные усилия акушеров-гинекологов, неонатологов и педиатров.

Литература и источники

- 1. Yang L., Fu J., Zhou Y. Research progress in atopic march // Front. Immunol. 2020. Vol. 11. P. 1907. [PMID: 32973790]
- 2. Tsakok T., Marrs T., Mohsin M. et al. Does atopic dermatitis cause food allergy? A systematic review // J. Allergy Clin. Immunol. 2016. Vol. 137. №4. P. 1071–1078. [PMID: 26897122]
- 3. Kapur S., Watson W., Carr S. Atopic dermatitis // Allergy Asthma Clin. Immunol. 2018. Vol. 14. Suppl. 2. P. 52. [PMID: 30275844]
- Brown S.J. Atopic eczema: how genetic studies can contribute to the understanding of this complex trait // J. Invest. Dermatol. 2022. Vol. 142. №4. P. 1015–1019. IPMID: 350075581
- 5. Атопический дерматит: Клинические рекомендации / Минздрав РФ. М., 2024. URL: https://cr.minzdrav.gov.ru/view-cr/265_2.
- 6. Кубанов А.А., Богданова Е.В. Результаты деятельности медицинских организаций, оказывающих медицинскую помощь по профилю «дерматовенерология», в 2019—2021 гг. в Российской Федерации // Вестник дерматологии и венерологии. 2022. №98 (5). С. 18—33. 7. Langan S.M., Irvine A.D., Weidinger S. Atopic dermatitis // Lancet. 2020. Vol. 396. №10247. P. 345—360. [PMID: 32738956]
- 8. Malajian D., Guttman-Yassky E. New pathogenic and therapeutic paradigms in atopic dermatitis // Cytokine. 2015. Vol. 73. №2. P. 311–318. [PMID: 25542094]
- 9. Menon G.K., Lee S.E., Lee S.H. An overview of epidermal lamellar bodies: Novel roles in biological adaptations and secondary barriers / J. Dermatol. Sci. 2018. Vol. 92. № 1. P. 10–17. [PMID: 30153959]
- 10. Loxham M., Davies D.E. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients / J. Allergy Clin. Immunol. 2017. Vol. 139. №6. P. 1736–1751. [PMID: 28583446]
- 11. Flohr C., Mann J. New insights into the epidemiology of childhood atopic dermatitis // Allergy. 2014. Vol. 69. № 1. P. 3–16. [PMID: 24417229]
- 12. Celebi Sözener Z., Cevhertas L., Nadeau K. et al Environmental factors in epithelial barrier dysfunction // J. Allergy Clin. Immunol. 2020. Vol. 145. №6. P. 1517–1528. [PMID: 32507229]
- 13. Correa da Rosa J., Malajian D., Shemer A. et al. Patients with atopic dermatitis have attenuated and distinct contact hypersensitivity responses to common allergens in skin // J. Allergy Clin. Immunol. 2015. Vol. 135. №3. P. 712—720. [PMID: 25583101]
- 14. Kathuria P., Silverberg J.I. Association of pollution and climate with atopic eczema in US children // Pediatr. Allergy Immunol. 2016. Vol. 27. №5. P. 478–485. [PMID: 26842875] 15. Kantor R., Silverberg J.I. Environmental risk factors and their role in the management of atopic dermatitis // Expert Rev. Clin. Immunol. 2017. Vol. 13. №1. P. 15–26. [PMID: 27417220]
- 16. Polk B.I., Bacharier L.B. Potential strategies and targets for the prevention of pediatric asthma // Immunol. Allergy Clin. North Am. 2019. Vol. 39. №2. P. 151–162. [PMID: 30954167]
 17. Widström A.M., Brimdyr K., Svensson K. et al. Skin-
- 17. Widström A.M., Brimdyr K., Svensson K. et al. Skinto-skin contact the first hour after birth, underlying implications and clinical practice // Acta Paediatr. 2019. Vol. 108. № 7. P. 1192—1204. [PMID: 30762247]
 18. Lodge C.J., Tan D.J., Lau M.X. et al. Breastfeeding and
- Lodge C.J., Tan D.J., Lau M.X. et al. Breastfeeding and asthma and allergies: A systematic review and meta-analysis // Acta Paediatr. 2015. Vol. 104. №467. P. 38-53. [PMID: 26192405]
- 19. Halken S., Muraro A., De Silva D. et al. Preventing the development of food allergy in infants and young children (2020 update): EAACI guideline // Pediatr. Allergy Immunol. 2021. Vol. 32. №5. P. 843—858. [PMID: 33710678] 20. Infant and young child feeding / WHO. URL: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding.
- 21. Danielewicz H. Breastfeeding and allergy effect modified by genetic, environmental, dietary, and immunological

- factors // Nutrients. 2022. Vol. 14. № 15. P. 3011. [PMID: 35893863]
- 22. Björkstén B., Ait-Khaled N., Asher M.I. et al. Global analysis of breast feeding and risk of symptoms of asthma, rinconjunctivitis and eczema in 6–7-year-old children: ISAAC phase three // Allergol. Immunopathol. 2011. Vol. 39. №6. P. 318–325. [PMID: 21802826]
- 23. Sikdar S., Joehanes R., Joubert B.R. et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking // Epigenomics. 2019. Vol. 11. №13. P. 1487—1500. [PMID: 31536415]
- 24. Tanaka K., Miyake Y., Furukawa S., Arakawa M. Preand postnatal smoking exposure and risk of atopic eczema in young Japanese children: A prospective prebirth cohort study // Nicotine Tob. Res. 2017. Vol. 19. №7. P. 804–809. [PMID: 27794037]
- 25. Wang I.J., Wen H.J., Chiang T.L. et al. Maternal psychologic problems increased the risk of childhood atopic dermatitis // Pediatr. Allergy Immunol. 2016. Vol. 27. №2. P. 169–176. [PMID: 26647908]
- 26. Halling-Overgaard A.S., Hamann C.R., Holm R.P. et al. Atopic dermatitis and alcohol use: A meta-analysis and systematic review // J. Eur. Acad. Dermatol. Venereol. 2018. Vol. 32. N88. P. 1238—1245. [29377395]
- 27. Moreno-Fernandez J., Ochoa J.J., Lopez-Frias M., Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: A narrative review // Nutrients. 2020. Vol. 12. №12. P. 3900. [PMID: 33419354] 28. Zeng J., Wu W., Tang N. et al. Maternal dietary protein
- 28. Zeng J., Wu W., Tang Ń. et al. Maternal dietary protein patterns during pregnancy and the risk of infant eczema: A cohort study // Front. Nutr. 2021. Vol. 8. P. 608972. [PMID: 34150822]
- 29. Chatzi L., Torrent M., Romieu I. et al. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood // Thorax. 2008. Vol. 63. №6. P. 507–513. [PMID: 18198206]
- 30. Marco M.L., Sanders M.E., Gänzle M. et al. The International scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods // Nat. Rev. Gastroenterol. Hepatol. 2021. Vol. 18. №3. P. 196–208. [PMID: 33398112]
- 31. Cui H., Mu Z. Prenatal maternal risk factors contributing to atopic dermatitis: A systematic review and meta-analysis of cohort studies // Ann. Dermatol. 2023. Vol. 35. №1. P. 11. [PMID: 36750454]
- 32. Chen W., Wang L., Yao H. et al. Prepregnancy BMI, gestational weight gain and risk of childhood atopic dermatitis: A systematic review and meta-analysis // Pediatr. Allergy Immunol. 2021. Vol. 32. №5. P. 892–904. [PMID: 33621384]
- 33. Нормальная беременность: Клинические рекомендации / Минздрав РФ. М., 2023. URL: https://cr.minzdrav.gov.ru/view-cr/288_2.
- 34. WHO antenatal care recommendations for a positive pregnancy experience: nutritional interventions update: multiple micronutrient supplements during pregnancy WHO. 2020. URL: https://iris.who.int/bitstream/handle/10665/333561/9789240007789-eng.pdf?sequence=1.
- 35. Баранов И.И., Дмитриев М.Э., Попович Л.Д. и др. Обеспеченность микронутриентами женщин в РФ: влияние на течение беременности, перинатальные исходы и демографические показатели // Акушерство и гинекология: новости, мнения, обучение. 2021. Т. 9. №4 (34). С. 44—51. 36. Czeizel A.E., Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation // N. Engl. J. Med. 1992. Vol. 327. №26. P. 1832—1835. [PMID: 1307234]
 37. Czeizel A.E. Reduction of urinary tract and cardio-
- 37. Czeizel A.Ē. Reduction of urinary tract and cardio-vascular defects by periconceptional multivitamin sup-plementation // Am. J. Med. Genet. 1996. Vol. 62. №2. P. 179–183. [PMID: 8882400]
- 38. Прегравидарная подготовка: Клинический протокол Междисциплинарной ассоциации специалистов репро-

- дуктивной медицины (МАРС). Версия 3.1. М.: Редакция журнала StatusPraesens, 2024. 124 с.
- 39. Hoel S.T., Wilk J., Carlsen K.C. et al. Birth mode is associated with development of atopic dermatitis in infancy and early childhood // J. Allergy Clin. Immunol. Glob. 2023. Vol. 2. №3. P. 100104. [PMID: 37779526]
- 40. Wang S., Yin P., Yu L. et al. Effects of early diet on the prevalence of allergic disease in children: A systematic review and meta-analysis // Adv. Nutr. 2024. Vol. 15. №1. P. 100128. [PMID: 37827490]
- 41. Vassilopoulou E., Rallis D., Milani G.P. et al. Nurturing infants to prevent atopic dermatitis and food allergies: A longitudinal study // Nutrients. 2023. Vol. 16. №1. P. 21. [PMID: 38201851]
- 42. Fewtrell M., Bronsky J., Campoy C. et al. Complementary feeding: A position paper by the European society for paediatric gastroenterology, hepatology, and Nutrition (ESPGHAN) committee on nutrition // J. Pediatr. Gastroenterol. Nutr. 2017. Vol. 64. № 1. P. 119—132. [PMID: 28027215]
- 43. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: Методические рекомендации. М.: Союз педиатров России, 2019. URL: https://www.pediatr-russia.ru/information/dokumenty/other-docs/nacprog1year_2019.pdf.
- 44. Hidajat D., Haq A.D., Warnaini C., Kadriyan H. Cord blood 25-hydroxyvitamin D level is correlated with a risk for atopic dermatitis: Systematic review and meta-analysis / Malays. J. Med. Sci. 2024. Vol. 31. №4. P. 50–62. [PMID: 39247110]
- 45. Petriashvili M. Impact of maternal vitamin D status on the formation of atopic dermatitis in young children // Glob. Pediatr. Health. 2021. Vol. 8. [PMID:34164570]
- 46. Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции: Национальная программа / Союз педиатров России и др. М.: ПедиатрЪ, 2021. 116 с.
- 47. Trikamjee T., Comberiati P., D'Auria E. et al. Nutritional factors in the prevention of atopic dermatitis in children // Front. Pediatr. 2021. Vol. 8. P. 577413. [PMID: 33585361]
- 48. Fu H., Li Y., Huang H., Wang D. Serum vitamin D level and efficacy of vitamin D supplementation in children with atopic dermatitis: A systematic review and meta-analysis // Comput. Math. Methods Med. 2022. Vol. 2022. P. 9407888. [PMID: 35912161]
 49. Furuhjelm C., Warstedt K., Larsson J. et al. Fish oil sup-
- 49. Furuhjelm C., Warstedt K., Larsson J. et al. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy // Acta Paediatr. 2009. Vol. 98. №9. P. 1461–1467. [PMID: 19489765]
- 50. Rusu E., Enache G., Cursaru R. et al. Prebiotics and probiotics in atopic dermatitis // Exp. Ther. Med. 2019. Vol. 18. №2. P. 926–931. [PMID: 31384325]
- 51. Amalia N., Orchard D., Francis K.L., King E. Systematic review and meta-analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children // Australas. J. Dermatol. 2020. Vol. 61. №2. P. 158–173. [PMID: 31721162]
 52. Lee M.T., Wu C.C., Ou C.Y. et al. A prospective birth
- 52. Lee M.T., Wu C.C., Ou C.Y. et al. A prospective birth cohort study of different risk factors for development of allergic diseases in offspring of non-atopic parents // Oncotarget. 2017. Vol. 8. №7. P. 10858—10870. [PMID: 28086237]
- 53. Savva M., Papadopoulos N.G., Gregoriou S. et al. Recent advancements in the atopic dermatitis mechanism // Front. Biosci. (Landmark Ed). 2024. Vol. 29. №2. P. 84. [PMID: 38420827]
- 54. Ratley G., Zeldin J., Sun A.A. et al. Spatial modeling connecting childhood atopic dermatitis prevalence with household exposure to pollutants // Commun. Med. (Lond). 2024. Ne4. P. 74. [PMID: 38637696]
 55. Frazier W., Bhardwaj N. Atopic Dermatitis: Diagnosis
- Frazier W., Bhardwaj N. Atopic Dermatitis: Diagnosis and Treatment // Am. Fam. Physician. 2020. Vol. 101. P. 590-598. [PMID: 32412211]